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ITEM CHARACTERISTIC CURVE PARAMETERS:
EFFECTS OF SAMPLE SIZE ON LINEAR EQUATING

L. INTRODUCTION

The application of the technology of computer driven adaptive testing requires the
development of large banks of test items. Each bank may contain 250 to 400 items, and all must
measure the same ability on the same metric or scale. It is unreasonable and impracticable to
assemble a single group of 2,000 subjects for 250 to 400 minutes to try all the items; therefore,
a method for linking together subsets of items administered to varying groups must be
investigated. Item Characteristic Curve (ICC) theory offers a unique method of linking subsets of
test items due to the invariance property of the ICC parameters. This invariance property rests on
the two major theoretical assumptions of latent-trait theory: (a) unidimensionality and (b) local
independence. Unidimensionality means that only a single ability is being measured and is assumed
to be the property of an item pool, even when assembled into subsets. Local independence means
that the subjects’ responses to an item are independent of the responses to another item. More
simply put, this means that the item response is a function of ability and no other factor. In
effect, this is a restatement of the unidimensionality assumption. If an item pool is
unidimensional, then any shift in score metric that is due to a linear transformation may be
corrected or adjusted by application of the proper complementary linear transformation. This is
what is meant by the idea that latent-trait parameters are invariant to a linear transformation, and
it is this theoretical property that aliows item pools to be linked and transformed to a common
metric. In previous research efforts, item pools have been linked via the method of linear equating
(see Lord, 1977; Ree, 1977; Sympson & Ree, in press) with apparent success. To date, there has
been little research on the efficacy of these linking procedures and the effects of errors in ICC
parameter estirnation on their (linearly) transformed values.

ICC Parameters

The three parameter logistic model of Birnbaum (Lord & Novick, 1968) is the most
frequently used for relating item responses to subjects’ ability. The three parameters, 4, b, and c,
are item discrimination, item difficulty (or location), and probability of chance success (or lower
asymptote), respectively.

The curve described by these parameters takes the shape of an ogive (cumulative frequency)
or an “s” with the upper asymptote approaching a probability of 1.0 and wusually a lower
asymptote of a probability greater than 0.0. The ogive describes the probability of obtaining a
correct answer to an item as a monotonic increasing function of ability.

The item discrimination parameter, 4, is a function of the slope of the ICC and generally
ranges from .5 to about 2.5. The value of a equal to about 1.0 is typical of many test items,
while a values below 5 are insufficiently discriminating for most testing purposes, and a values
above 2.0 are infrequently found.

The item difficulty parameter, b, describes the point of inflection of the ICC and is usually
scaled between —2.5 and +2.5, although the metric is arbitrary.

The item guessing parameter, ¢, is the lower asymptote of the ICC and is generally
conceived as the probability of selecting the correct item-option by chance alone. Most test items
have ¢ parameters greater than 0.0 and less than or equal to .30.

Figure 1 shows three ICCs. The horizontal axis is scaled in units of ability & and the
vertical axis is the probability of answering the item correctly. The solid curved line shows an ICC
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Figure 1. Item characteristic curves.

for an item of average difficulty with acceptable discrimination and the lower asymptote
appropriate for a five-item multiplechoice item. The dashed line shows an item of identical
difficulty, ¢ value of .28, but with a lower a value. Note how the slope of the curve is less
steep. The third curve, dot-dash line, shows an item with a ¢ value of .30, an 2 parameter of 10,
and the b parameter equal to 1.0. As the b parameter changes, the location of the inflection
point of the curve is displaced along the horizontal axis.

Equation 1 presents the mathematical function describing the curve.

PO = ¢+ (1-cy@rrel RO TON )




Previous research (Ree, 1978) indicates that the ICC parameters may be estimated with some
reasonable degree of accuracy, providing a sufficient sample of examinees with an appropriate
distribution of ability, 6 is available.

Linking Paradigms

Two fundamental linking procedures may be defined and are known as the Anchor ltems
Method (AIM) and the Anchor Subjects Method (ASM). In AIM, every subset of items is
administered to a different sample of subjects, but embedded into the group of items to be
analyzed is a common (or anchor) set of items. During analysis, the anchor items are identified,
and the following linear transformation is applied to the resultant ICC parameters:

b A2\ b+ | B ® v @
g 2 - - 2
t isb s ¢ sb,

Where b is the item location parameter transformed to the desired scale and sb, and sb, are
standard deviations of the desired scale and observed scale respectively. A similar procedure for the
a parameter is defined by

a = a, +—2 (3)

Where a is the item discrimination parameter transformed to the desired scale, a, is the observed a
parameter, and sb and sb_ are as in equation (2). Because the ¢ parameter is measured on the
probability axis, it does not change and no transformation need be applied.

The ASM requires that the same group of subjects be available to take each subset of items.
It is extremely unlikely that the same 2,000 subjects could be assembled to take items over a
long period of time as would be required to place tests on the same metric from year to year.
For this reason, the ASM method seems less likely to find long-term practical application. Because
of its potential for use, the AIM procedure is the subject of the present study.

Il. METHOD

In order to have a known standard for reference. a simulation study was run using two
groups of subjects, a single set of 20 anchor items and two differing groups of 60 experimental,
or nonanchor, items. These two groups of items were assembled into two tests designated Tl and
T2. Both groups of simulated subjects were specified to have about the same normal distribution
of 6. Table 1 shows the mean, standard deviation, minimum and maximum of 8 for the groups Sl
and S2. These two groups represent what might be expected if subjects for experimental testing
were picked from some larger pool, such as candidates for military enlistment for example.
Response vectors for these subjects were generated on the two tests.
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Table 1. Mean, Standard Deviation,
Minimum and Maximum of ¢
for Groups S1 and S2

Groups
Parameter s1 s2
X¢ --0.0145 0.0250
g 0.9976 1.0045
Minimum -2.6000 -2.6000
Maximum 2.6000 2.6000

Generation of Item Responses

In order to generate a vector of item responses for each “subject™ the 8 values were used in
equation (1) to compute the likelithood of “passing’™ each item.

Because Equation ! yields a number P(0). such that 0.0 < P(8). < 1.0. a number X is
drawn from a uniform (rectangular) distribution ranging from 0.0 to 1.0 and compared to P8).. If
Xj is larger than P(6),. then an incorrect response is specified for the item: otherwise, a cofrect
response is specified tJor the item. Thus, a “subject” with P(6). = 90 gets the item correct 9 in
10 times, and a vector of item responses is developed for each *subject™ in each data set. These
response vectors are then used to investigate the AIM linking procedures.

Table 2 shows the distribution of ICC parameters for the 80 items for Test 1 (T1) and Test
2 (T2), while Table 3 shows the ICC parameters for the 20 anchor items which are common to
both tests.

Subjects from Group 1 were administered only the items in Test 1, and subjects from Group
2 only the items in Test 2. In order to study the effects of sample size. the 1CC parameters were
estimated on four samples drawn with replacement as follows: 250: 500: 1.000: and 2.000. The
ICC parameters were estimated on these four sample sizes for both groups. Anchor ICC parameter
values from the four samples administered Test 1 serve as the input values for the anchor item
parameters to the second test. This permitted the four sizes of calibration sample (250: 500:
1,000; 2,000) to be varied and tried out with the four samples used to estimate the anchor item
ICC parameters.

Table 2. Means and Standard Deviations
of the Generated Item Parameters for Test 1 (T1)

and Test 2 (T2)
Test
Parameter Tt T2
a 1.0564 1.0452
0, 0.2793 0.2394
iy 0.0847 0.0559
oy, 0.8442 0.8577
5 0.1878 0.2017

o, 0.0542 0.0474




o Table 3. 1CC Parameters of the 20
1 Anchor Items Common to Both Tests

R . 1CC Parameter
! I‘ Number a ] [ ]
3 | 1 8000 ~1.5000 1000
b 2 8000 ~1.3500 .1000
w 3 1.0000 ~1.2000 1500
" 4 1.0000 ~1.0500 1500
i 5 1.1000 — 5000 .2000
q 6 1.2000 ~.7500 .2000
’ 7 1.2000 - 6000 2200
R 8 1.2000 —-.4500 .2000
g 9 1.3000 --.3000 2000
i 10 1.4000 ~.1500 .2000
1 1.4000 1500 2200
< 12 1.3000 .3000 2500
i 13 1.2000 4500 .2000
S 14 1.2000 .6000 2200
S 15 1.1000 7500 2200
i 16 1.0000 9000 .2000
, 17 1.0000 1.0500 2500
18 8000 1.2500 .2500
- 19 8000 1.3500 2500
. 20 8000 1.5000 2500
= Mean 1.0600 .0000 2015
‘ SD 2113 9549 0453
L
Tﬁ ‘ Ili. RESULTS

Table 4 shows the intercorrelations between the known item parameters and the estimated
paramete:s. As past research indicates (Urry, 1976), the correlations all increase with increasing
sample size. The correlations in Test 1 for » and estimates of b start high at 952 and increase
to an exceptionally high .992. Correlations for @ and estimates of a begin moderately at .666 and
climb to .869, but the correlations of ¢ and estimated ¢ increase from only 031 to .115. In Test
2. much the same pattern is observed except that the correlation of ¢ and estimated ¢ increases

4‘ from .164 to .315 as sample size increases.

Because correlations are insensitive to constant differences as might be found if ICC
parameters are overestimated or underestimated by a constant .amount, summed absolute deviates
of the estimated parameters from the known parameters were computed for each parameter in
each sample size. Table S presents the summed absolute deviations (or summed errors) for both
tests with the four sample sizes. Figure 2 displays this graphically. There is a large drop in
summed error when the a parameter is estimated on progressively larger samples of subjects up to !
and including the difference between 1,000 and 500 subjects. Between 1,000 and 2000 subjects.
the difference in summed error is smaller. The relationship between error and sample size for the
b parameter is more nearly constant. That is, the line on the figure for estimates of b is generally
straight which means error tends to be reduced in direct proportion to tiie number of subjects.
The almost flat line for the ¢ parameter indicates that virtually no reduction of error is occurring
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Table 4. Intercorrelations between Known

Groups with Varying Sample Sizes

!

{

{

:

|

{

5

1 and Estimated 1CC Parameters for Both
|

|

Parameter N Teost Teost 2

a 250 666 512

, 500 671 725

} 1,000 831 813

; 2,000 869 886
.l b 250 952 929
C 500 964 962
: 1,000 980 979

) 2,000 992 987
1 ¢ 250 031 164
‘ 500 03 109
st 1,000 -012 331
' 2,000 dts 315

-

Table 5. Summed Absolute Deviations (Z{Error|) and Average Absolute

Deviations (|Errorl) for the Three ICC Parameters
for the Two Tests

! Test 1 Test 2

Parameter N X |Error} |Error| ZiError! |Errorl

a 250 30.6450 3831 30.5290 3816

’ a 500 22.8090 2851 20.6910 2586
a 1,000 15.7490 1969 16.8910 2t

a 2,000 15.5980 1950 15.1390 .1892

b 250 23.5050 2938 20.8470 2606

b 500 19.8600 .2483 16.6070 2076

b 1,000 17.6890 2211 13.8050 1726

y b 2,000 12.7350 1592 11.5130 1439
[ ¢ 250 7.7360 0967 7.2350 0904
| ¢ 500 7.3600 0920 75120 0939
¢ 1,000 6.9080 0864 7.3180 0915

¢ 2.000 6.4400 0805 6.8640 0858
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Figure 2. Error in Estimation of 1CC Paameter.

With increasing sample size for that parameter. The average absolutc deviation for the ¢ parameter
is almost one-third of the entire range of the parameter as the ¢ parameter is generally estimated
between 00 and .30. However, past research (Ree. 1979) indicates that. even for low ability
subjects, the effects of errors in the estimation of the c¢ parameter are small,

Summed deviations of known ICC parameters from the equated value of the ICC parameters
were computed for the aandb parameters for the 16 combinations of calibration sample size and
equating sample size. Table 6 shows the summed deviations and the per item deviation for both
parameters for the 16 combinations. The equated a parameter shows large summed dewviations
whenever the sample has been limited to 250 subjects whether in the calibration or equating
sample. The lowest error rates for the a parameter occur when the anchor item values have been
estimated on 2,000 subjects. The effects of the size of the calibration sample are not so clear-cut.
When 2,000 subjects are used to estimate the anchor item ICC parameters. the magnitude of the
error is approximately the same for all calibration sample sses except 250. With mncreasing
calibration sample size, the error rate increases by some small amount as indicated by the average
(per item) error. This is an unexpected result and an explanation may be found i the
relationship between the sets of estimated a parameters. If the estimated o parameters were all
estimates of the same value and if the test scale were unidimensional. 3 bauc sssumption ot the
theory, then the estimated a parametess should be lincar transformstions of one another and
should be correlated 1.0. as correlations are invariant to a hnear transtormanon Thiv was net
found to be the case. and Table 7 shows the intercorrelation ot the cstimated 2 parameterss Onh

the correlation bhetween the estimate of g calculated on 1000 subpcts and the cstimapte 0y
calculated on 2,000 subjects approaches this relationship Thiy Tack of fmeanty nav ho ue 1 one
assumption of normality and to the rescaling used in the cabbration pricedure and thew v
interact in such a way as to produce the anomalows results Table N shows the i vecrar

estimated b parameters. All exceed 900. and the summed deviations abv show 1 steads
as sample size increases for the h parameter indicating & wirtuadly mears o
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' ‘ Table 6. Summed Absolute Deviations (Z|Errori) and Average Absolute Deviations
'c (|Errorl) for the 2 and b Parameters for Various
! Equating and Calibrating Sample Sizes
Pavameter
; Number of Subjects a ]
; Calibration Equating SlEeror| JEmor! L 1Emror iEerort
.i
. 250 2000 34.2263 4278 23.3679 2921
N 500 2000 15.1282 1891 219342 2742
L 1000 2000 159871 1998 16.3660 .2046
- 2000 2000 16.5958 .2074 134579 .1682
a4 250 1000 38.3625 4795 25.6440 3205
' 500 1000 17.6788 2210 24.3413 .3043
e 1000 1000 19.5867 2448 19.1156 .2389
) 2000 1000 21.0321 2629 16.8828 2110
. 250 500 48.6112 6076 254374 3180
500 500 24.5582 3070 22.8994 .2862
! 1000 500 28.8291 .3604 18.1871 2273
IO 2000 500 31.2094 .3901 15.8328 1979
i 250 250 44.3122 5539 26.2011 3275
! 500 250 21.5767 2697 244160 .3052
1000 250 24.4389 3117 19 4843 2436
2000 250 27.0242 3378 17.3255 2166
t
Table 7. Intercorrelations, Means,
and Standard Deviation of the Estimated
a Parameters® for Test 2
- 1 2 3 4
~ 1 1.000
‘ 2 357 1.000
3 690 860 1.000
4 595 803 926 1.000
Mean 1.3525 1.2539  1.2348 t.2268
sD 4843 3347 .3254 3061

3Variables are for the four sample sizes: 250: 500: 1,000:
2,000.
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Table 8. Intercorrelations, Means, and

Standard Deviation of the Estimated
b Parameters® for Test 2
1 2 3 4
1 1.00
2 952 1.00
3 940 978 1.00
4 935 969 986 1.00
Mean 0563 0591 0735 0559
SD 8558 8384 8700 8727

3Variables are for the four sample sizes: 250: 500: 1,000:
2,000.

estimated b parameters from sample to sample. However, with 500 subjects in the eqiating
sample, a similar anomaly is observed which may also be due 1o normal assumptions and to
rescaling.

IV. DISCUSSION

The results of the study present new evidence of the critical interrelationship between item
calibration and equating sample sizes and the values of ICC parameters.

Estimating and Equating a

For the 16 combinations of calibration sample sizes and equating sample sizes identified in
Table 6, the least deviation of estimated a from its known value occurred with an equating
sample size of 2,000 and a calibration sample size of 500. As mentioned in the previous section,
although the least error between the estimated and known a values was expected with a match of
2,000 equating and 2,000 calibrating sample sizes, the error actually increased very slightly with
increasing calibration sample sizes beyond 500. This discrepancy apparently results from a
non-inear transformation with sample sizes of 250 and 500 but tends toward linearity with sample
sizes of 1,000 and 2,000.

During equating procedures, a sample size > 500 should be developed to ensure an
acceptable degree of confidence that the estimation of @ does not significantly depart from its
“true” value. In the same light, estimation of a suffers considerably using equating sample sizes of

less than 500 such that equating samples of 1.000 or 2,000 are highly desirable to minimize error
in estimating 4.

Estimating and Equating b

Table 6 also shows the linear relationship between error and sample size for the b
parameter. The b parameter is best estimated with calibration and cquating samples of 2.000 cach,
although a calibration sample size of 1,000 with an equating sample size of 500 can be tolerated
without an appreciable increase in error. With all combinations of calibration and equating sample
sizes, b is estimated quite well,
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Estimating and Equating c

The flat line drawn in Figure 2, representing the data from Table S, shows the estimation of
the ¢ parameter to be nearly insensitive to increases in sample size. As sample size increases from
250 to 2,000 subjects, the error decreases but only very slightly. With the ¢ defined as the lower
asymptote of the ICC and representing the probability of extremely low ability examinees
correctly answering an item, the inability to estimate ¢ with precision could be disturbing.
However, it has been pointed out (Lord, 1975) that if a (f - b) < -2, then the probability of a
correct response is ¢. Therefore, if there are a large number of subjects with ability 8 so that 6
< ~2/a — b), ¢ can be accurately estimated. If this requirement is not met, ¢ will be poorly estimated.

A stable and accurate estimate of the aand b parameters requires large numbers of subjects
over a broad range of ability. The estimation of ¢ requires large numbers of subjects at very low
ability levels. This holds for both equating and calibrating samples; therefore, it is necessary to
administer test items, whether to be calibrated or equated, to the largest samples available.
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